Strange mystery of ‘lost’ planets through space may be solved: ScienceAlert

Today, the number of confirmed exoplanets stands at 5197 in 3888 planetary systemswith 8,992 other candidates awaiting confirmation.

The vast majority were especially huge planets, starting with Jupiter and gas giants the size of Neptune, which have a radius of about 2.5 times the diameter of Earth.

else Statistically significant Their populations were rocky planets measuring about 1.4 Earth radii (also known as “super-terrestrial planets”).

This is a mystery to astronomers, especially as he discovered the venerable exoplanets kepler space telescope we are worried.

Of the more than 2,600 planets discovered by Kepler, there is a distinct dearth of exoplanets with a radius of about 1.8 times the diameter of Earth – referred to as the “Valley of the Radius”.

Illustration depicting a rarity of exoplanets about 1.8 times the size of Earth observed by NASA’s Kepler spacecraft. (Prof. Isidoro / Rice University)

The second puzzle, known as “Peas in a Pod,” refers to neighboring planets of similar size found in hundreds of planetary systems with harmonious orbits.

In a study led by Cycles of volatile elements essential to life on rocky planets (CLEVER) at Rice University, presents an international team of astrophysicists new model This explains the interaction of forces acting on the newborn planets that can explain these two puzzles.

The research was led by Andre Isidoro, Welch Postdoctoral Fellow at Rice with funding from NASA culver planets project. He was joined by Culver Planets investigators Rajdeep Dasgupta And the Andrea IselaAnd the Helk Schleichting from the University of California, Los Angeles (UCLA), and Christian Zimmermann and Bertram Beech from the Max Planck Institute for Astronomy (MPIA).

As they describe in their research paper, which recently appeared in Astrophysical Journal LettersThe team used a supercomputer to run a planetary migration model that simulates the first 50 million years of planetary system development.

See also  Australian astronomers have said that a faster-growing black hole may have been found over the past 9 billion years in space

In their model, protoplanetary disks made of gas and dust also interact with the migrating planets, pulling them close to their parent stars and trapping them in resonant orbital chains.

Within a few million years, the protoplanetary disk disappears, breaking the chains and causing orbital instability that causes two or more planets to collide. While models of planetary migration have been used to study planetary systems that have retained orbital resonance, these results represent a first for astronomers.

As Isidoro said at Rice University, statement: “I think we are the first to explain the valley radius using a model of planetary formation and dynamic evolution that consistently explains the limitations of multiple observations.

“We are also able to show that a planetary formation model that includes giant impacts is consistent with the pea feature of exoplanets.”

This work builds on previous work by Izidoro and the CLEVER Planets project. Last year, they used a migration model to calculate the maximum perturbation of the seven planetary system at TRAPPIST-1.

In an article published on November 21, 2021 in natural astronomy, they used N-body simulations to show how the “pea in a capsule” system could maintain its symmetrical orbital structure despite collisions caused by planetary migration. This allowed them to place constraints on the upper limit of collision and the mass of the objects involved.

Their results indicate that the collisions in the TRAPPIST-1 system were comparable to the impact that led to the creation of the Earth-Moon system.

“Migration of minor planets toward their host stars creates overcrowding and often results in catastrophic collisions that strip planets of their hydrogen-rich atmosphere,” Isidoro said.

See also  How artificial intelligence helps in the search for extraterrestrial life

“This means that giant impacts, such as the ones that formed our moon, are probably a general result of planet formation.”

This latest research suggests that planets come in two different types, consisting of dry, rocky planets 50 percent larger than Earth (super-Earths) and water-ice-rich planets more than 2.5 times the size of Earth (small Neptunes).

In addition, they suggest that a small portion of planets twice the size of Earth would retain their primordial hydrogen-rich atmosphere and would be rich in water.

According to Isidoro, these findings are consistent with new observations that the super-Earths and minor Neptune are not just dry and rocky planets.

These findings present opportunities for exoplanet researchers, who will rely on the James Webb Space Telescope to make detailed observations of exoplanet systems.

Using his advanced array of optics, infrared imaging, vertebrae, and spectrometers, Webb and other next-generation telescopes will characterize the atmospheres and surfaces of exoplanets like never before.

This article was originally published by the universe today. Read the original article.

Leave a Reply

Your email address will not be published. Required fields are marked *